Scaling relationships among drivers of aquatic respiration in temperate lakes: from the smallest to the largest freshwater ecosystems

نویسنده

  • E. K. Hall
چکیده

To address how various environmental parameters control or constrain planktonic respiration (PR), we used geometric scaling relationships and established biological scaling laws to derive quantitative predictions for the relationships among key drivers of PR. We then used empirical measurements of PR and environmental (soluble reactive phosphate [SRP], carbon [DOC], chlorophyll a [Chl-a)], and temperature) and landscape parameters (lake area [LA] and watershed area [WA]) from a set of 44 lakes that varied in size and trophic status to test our hypotheses. We found that landscape-level processes affected PR through direct effects on DOC and temperature and indirectly via SRP. In accordance with predictions made from known relationships and scaling laws, scale coefficients (the parameter that describes the shape of a relationship between 2 variables) were found to be negative and have an absolute value <1. Biological parameters scaled positively with physical and chemical processes in accordance with those predicted from theory or previous studies (i.e., temperature >1, others <1). We also found evidence of a significant relationship between temperature and SRP. Because our dataset included measurements of respiration from small pond catchments to the largest body of freshwater on the planet, Lake Superior, these findings should be applicable to controls of PR for the great majority of temperate aquatic ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial community diversity patterns are related to physical and chemical differences among temperate lakes near Beaver Island, MI

Lakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each ...

متن کامل

Verrucomicrobia are prevalent in north-temperate freshwater lakes and display class-level preferences between lake habitats

The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documente...

متن کامل

Perspectives for an integrated understanding of tropical and temperate high-mountain lakes

High mountain lakes are extreme freshwater ecosystems and excellent sentinels of current global change. They are likely among the most comparable ecosystems across the world. The largest contrast occurs between lakes in temperate and tropical areas. The main difference arises from the seasonal patterns of heat exchange and the external loadings (carbon, phosphorus, metals). The consequence is a...

متن کامل

Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism

H. T. Odum’s influential Limnology and Oceanography 1956 publication compared gross primary production (GPP) and ecosystem respiration (ER) among aquatic ecosystems. Few syntheses of aquatic ecosystem metabolism have been completed since. We used Odum’s conceptual framework to compare GPP and ER from open-water diel oxygen curves in lakes, wetlands, estuaries, and streams (n 5 350). We also doc...

متن کامل

Taxonomic survey of cyanobacteria of Urmia Lake (NW Iran) and their adjacent ecosystems based on morphological and molecular methods

In the present study, the cyanobacterial flora of Urmia Lake (NW Iran), one of the largest salt lakes in the world and adjacent rivers is investigated. Urmia Lake comprises different micro-organisms including cyanobacteria which have a major role in aquatic ecosystems. Cyanobacterial samples were collected in 2008–09 from Urmia Lake and its surrounding ecosystems. All samples were cultivated, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016